

 Navigation

 	
 index

 	
 next |

 	behold 0.2.0 documentation

Table of Contents

	Behold: Python debugging for large projects

	API Documentation
	Managing Context

	Printing / Debugging

	Items

 Copyright 2015, Ambition Inc..

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	behold 0.2.0 documentation

Behold: Python debugging for large projects

Behold is a package that let’s you perform contextual debugging. You can use the
state inside one module to either trigger a step debugger or trigger print
statements in a completely different module. Given the stateful nature of many
large, multi-file applications (I’m looking at you, Django), this capability
provides valuable control over your debugging work flow.

Behold is written in pure Python with no dependencies. It is compatible with
both Python2 and Python3.

See the
Github project page [https://github.com/robdmc/behold].
for examples of how to use behold.

 Copyright 2015, Ambition Inc..

 Navigation

 	
 index

 	
 previous |

 	behold 0.2.0 documentation

API Documentation

This is the API documentation for the behold package. To see examples
of how to use behold, visit the
Github project page [https://github.com/robdmc/behold].

Managing Context

	
class behold.logger.in_context(**context_vars)[source]

	

	Parameters:	context_vars (key-work arguments) – Key-word arguments specifying the context variables
you would like to set.

You can define arbitrary context in which to perform your debugging. A
common use case for this is when you have a piece of code that is called
from many different places in your code base, but you are only interested in
what happens when it’s called from a particular location. You can just wrap
that location in a context and only debug when in that context. Here is an
example.

from behold import BB # this is an alias for Behold
from behold import in_context

A function that can get called from anywhere
def my_function():
 for nn in range(5):
 x, y = nn, 2 * nn

 # this will only print for testing
 BB().when_context(what='testing').show('x')

 # this will only print for prodution
 BB().when_context(what='production').show('y')

Set a a testing context using a decorator
@in_context(what='testing')
def test_x():
 my_function()

Now run the function under a test
test_x()

Set a production context using a context-manager and call the function
with in_context(what='production'):
 my_function()

	
behold.logger.set_context(**kwargs)[source]

	

	Parameters:	context_vars (key-work arguments) – Key-word arguments specifying the context variables
you would like to set.

This function lets you manually set context variables without using
decorators or with statements.

from behold import Behold
from behold import set_context, unset_context

manually set a context
set_context(what='my_context')

print some variables in that context
Behold().when_context(what='my_context').show(x='hello')

manually unset the context
unset_context('what')

	
behold.logger.unset_context(*keys)[source]

	

	Parameters:	keys (string arguments) – Arguments specifying the names of context variables you
would like to unset.

See the set_context() method for an example of how to use this.

	
behold.logger.get_stash(name)[source]

	

	Parameters:	name (str) – The name of the stash you want to retrieve

	Return type:	list

	Returns:	A list of dictionaries holding stashed records for each time the
behold.stash() method was called.

For examples, see documentation for Behold.stash() as well as the stash
examples on Github [https://github.com/robdmc/behold#stashing-results].

	
behold.logger.clear_stash(*names)[source]

	

	Parameters:	name – The names of stashes you would like to clear.

This method removes all global data associated with a particular stash name.

Printing / Debugging

	
class behold.logger.Behold(tag=None, strict=False, stream=None)[source]

	

	Parameters:	
	tag (str) – A tag with which to label all output (default: None)

	strict (Bool) – When set to true, will only only allow existing keys to be
used in the when_contex() and when_values()
methods.

	stream (FileObject) – Any write-enabled python FileObject (default: sys.stdout)

	Variables:	
	stream – sys.stdout: The stream that will be written to

	tag – None: A string with which to tag output

	strict – False: A Bool that sets whether or not only existing keys
allowed in when_contex() and when_values()
methods.

Behold objects are used to probe state within your code base. They can
be used to log output to the console or to trigger entry points for step
debugging.

Because it is used so frequently, the behold class has a couple of aliases.
The following three statements are equivalent

from behold import Behold # Import using the name of the class

from behold import B # If you really hate typing

from behold import BB # If you really hate typing but would
 # rather use a name that's easier to
 # search for in your editor.

from behold import * # Although bad practice in general, since
 # you'll usually be using behold just for
 # debugging, this is pretty convenient.

	
Behold.show(*values, **data)[source]

	

	Parameters:	
	values (str arguments) – A list of variable or attribute names you want to print.
At most one argument can be something other than a
string. Strings are interpreted as the
variable/attribute names you want to print. If a single
non-string argument is provided, it must be an object
having attributes named in the string variables. If no
object is provided, the strings must be the names of
variables in the local scope.

	data (keyword args) – A set of keyword arguments. The key provided will be the
name of the printed variables. The value associated with
that key will have its str() representation printed. You
can think of these keyword args as attatching additional
attributes to any object that was passed in args. If no
object was passed, then these kwargs will be used to create
an object.

This method will return True if all the filters passed, otherwise it
will return False. This allows you to perform additional logic in
your debugging code if you wish. Here are some examples.

from behold import Behold, Item
a, b = 1, 2
my_list = [a, b]

show arguments from local scope
Behold().show('a', 'b')

show values from local scope using keyword arguments
Behold.show(a=my_list[0], b=my_list[1])

show values from local scope using keyword arguments, but
force them to be printed in a specified order
Behold.show('b', 'a', a=my_list[0], b=my_list[1])

show attributes on an object
item = Item(a=1, b=2)
Behold.show(item, 'a', 'b')

use the boolean return by show to control more debugging
a = 1
if Behold.when(a > 1).show('a'):
 import pdb; pdb.set_trace()

	
Behold.when(*bools)[source]

	

	Parameters:	bools (bool) – Boolean arguments

All boolean arguments passed to this method must evaluate to True for
printing to be enabled.

So for example, the following code would print x: 1

for x in range(10):
 Behold().when(x == 1).show('x')

	
Behold.when_values(**criteria)[source]

	By default, Behold objects call str() on all variables before
sending them to the output stream. This method enables you to filter on
those extracted string representations. The syntax is exactly like that
of the when_context() method. Here is an example.

from behold import Behold, Item

items = [
 Item(a=1, b=2),
 Item(c=3, d=4),
]

for item in items:
 # You can filter on the string representation
 Behold(tag='first').when_values(a='1').show(item)

 # Behold is smart enough to transform your criteria to strings
 # so this also works
 Behold(tag='second').when_values(a=1).show(item)

 # Because the string representation is not present in the local
 # scope, you must use Django-query-like syntax for logical
 # operations.
 Behold(tag='third').when_values(a__gte=1).show(item)

	
Behold.when_context(**criteria)[source]

	

	Parameters:	criteria (kwargs) – Key word arguments of var_name=var_value

The key-word arguments passed to this method specify the context
constraints that must be met in order for printing to occur. The
syntax of these constraints is reminiscent of that used in Django
querysets. All specified criteria must be met for printing to occur.

The following syntax is supported.

	x__lt=1 means x < 1

	x__lte=1 means x <= 1

	x__le=1 means x <= 1

	x__gt=1 means x > 1

	x__gte=1 means x >= 1

	x__ge=1 means x >= 1

	x__ne=1 means x != 1

	x__in=[1, 2, 3] means x in [1, 2, 3]

The reason this syntax is needed is that the context values being
compared are not available in the local scope. This renders the normal
Python comparison operators useless.

	
Behold.view_context(*context_keys)[source]

	

	Parameters:	context_keys (string arguments) – Strings with context keys

Supply this method with any context keys you would like to show.

	
Behold.stash(*values, **data)[source]

	The stash method allows you to stash values for later analysis. The
arguments are identical to the show() method. Instead of writing
outpout, however, the stash() method populates a global list with
the values that would have been printed. This allows them to be
accessed later in the debugging process.

Here is an example.

from behold import Behold, get_stash

for nn in range(10):
 # You can only invoke ``stash()`` on behold objects that were
 # created with tag. The tag becomes the global key for the stash
 # list.
 behold = Behold(tag='my_stash_key')
 two_nn = 2 * nn

 behold.stash('nn' 'two_nn')

You can then run this in a completely different file of your code
base.
my_stashed_list = get_stash('my_stash_key')

	
Behold.extract(item, name)[source]

	You should never need to call this method when you are debugging. It is
an internal method that is nevertheless exposed to allow you to
implement custom extraction logic for variables/attributes.

This method is responsible for turning attributes into string for
printing. The default implementation is shown below, but for custom
situations, you inherit from Behold and override this method to obtain
custom behavior you might find useful. A common strategy is to load up
class-level state to help you make the necessary transformation.

	Parameters:	
	item (Object) – The object from which to print attributes. If you didn’t
explicitly provide an object to the .show() method,
then Behold will attach the local variables you
specified as attributes to an Item object.

	name (str) – The attribute name to extract from item

Here is the default implementation.

def extract(self, item, name):
 val = ''
 if hasattr(item, name):
 val = getattr(item, name)
 return str(val)

Here is an example of transforming Django model ids to names.

class CustomBehold(Behold):
 def load_state(self):
 # Put logic here to load your lookup dict.
 self.lookup = your_lookup_code()

 def extract(self, item, name):
 if hasattr(item, name):
 val = getattr(item, name)
 if isinstance(item, Model) and name == 'client_id':
 return self.lookup.get(val, '')
 else:
 return super(CustomBehold, self).extract(name, item)
 else:
 return ''

Items

	
class behold.logger.Item(_item_self, **kwargs)[source]

	Item is a simple container class that sets its attributes from constructor
kwargs. It supports both object and dictionary access to its attributes.
So, for example, all of the following statements are supported.

item = Item(a=1, b=2)
item['c'] = 2
a = item['a']

An instance of this class is created when you ask to show local variables
with a Behold object. The local variables you want to show are attached as
attributes to an Item object.

 Copyright 2015, Ambition Inc..

 Navigation

 	
 index

 	behold 0.2.0 documentation

Index

 B
 | C
 | E
 | G
 | I
 | S
 | U
 | V
 | W

B

 	

 	Behold (class in behold.logger)

C

 	

 	clear_stash() (in module behold.logger)

E

 	

 	extract() (behold.logger.Behold method)

G

 	

 	get_stash() (in module behold.logger)

I

 	

 	in_context (class in behold.logger)

 	

 	Item (class in behold.logger)

S

 	

 	set_context() (in module behold.logger)

 	show() (behold.logger.Behold method)

 	

 	stash() (behold.logger.Behold method)

U

 	

 	unset_context() (in module behold.logger)

V

 	

 	view_context() (behold.logger.Behold method)

W

 	

 	when() (behold.logger.Behold method)

 	when_context() (behold.logger.Behold method)

 	

 	when_values() (behold.logger.Behold method)

 Copyright 2015, Ambition Inc..

 _modules/behold/logger.html

 Navigation

 		
 index

 		behold 0.2.0 documentation »

 		Module code »

 Source code for behold.logger

from collections import defaultdict, OrderedDict
import copy
import functools
import inspect
import operator
import sys

TODO: THINK ABOUT CHANGING ALL NON-INTERFACE METHODS TO PRIVATE

TODO: Maybe add a strict kwark go Behold that will fail if
context/values keys aren't found.

TODO: make sure you can filter on unshown variables
TODO: test the inquality operator

class _Sentinal(object):
 pass

[docs]class Item(object):
 """
 Item is a simple container class that sets its attributes from constructor
 kwargs. It supports both object and dictionary access to its attributes.
 So, for example, all of the following statements are supported.

 .. code-block:: python

 item = Item(a=1, b=2)
 item['c'] = 2
 a = item['a']

 An instance of this class is created when you ask to show local variables
 with a `Behold` object. The local variables you want to show are attached as
 attributes to an `Item` object.
 """
 # I'm using unconventional "_item_self_" name here to avoid
 # conflicts when kwargs actually contain a "self" arg.

 def __init__(_item_self, **kwargs):
 for key, val in kwargs.items():
 _item_self[key] = val

 def __str__(_item_self):
 quoted_keys = [
 '\'{}\''.format(k) for k in sorted(vars(_item_self).keys())]
 att_string = ', '.join(quoted_keys)
 return 'Item({})'.format(att_string)

 def __repr__(_item_self):
 return _item_self.__str__()

 def __setitem__(_item_self, key, value):
 setattr(_item_self, key, value)

 def __getitem__(_item_self, key):
 return getattr(_item_self, key)

[docs]class Behold(object):
 """
 :type tag: str
 :param tag: A tag with which to label all output (default: None)

 :type strict: Bool
 :param strict: When set to true, will only only allow existing keys to be
 used in the ``when_contex()`` and ``when_values()``
 methods.

 :type stream: FileObject
 :param stream: Any write-enabled python FileObject (default: sys.stdout)

 :ivar stream: sys.stdout: The stream that will be written to
 :ivar tag: None: A string with which to tag output
 :ivar strict: False: A Bool that sets whether or not only existing keys
 allowed in ``when_contex()`` and ``when_values()``
 methods.

 ``Behold`` objects are used to probe state within your code base. They can
 be used to log output to the console or to trigger entry points for step
 debugging.

 Because it is used so frequently, the behold class has a couple of aliases.
 The following three statements are equivalent

 .. code-block:: python

 from behold import Behold # Import using the name of the class

 from behold import B # If you really hate typing

 from behold import BB # If you really hate typing but would
 # rather use a name that's easier to
 # search for in your editor.

 from behold import * # Although bad practice in general, since
 # you'll usually be using behold just for
 # debugging, this is pretty convenient.

 """
 # class variable to hold all context values
 _context = {}
 _stash = defaultdict(list)

 # operators to handle django-style querying
 _op_for = {
 '__lt': operator.lt,
 '__lte': operator.le,
 '__le': operator.le,
 '__gt': operator.gt,
 '__gte': operator.ge,
 '__ge': operator.ge,
 '__ne': operator.ne,
 '__in': lambda value, options: value in options
 }
 # TODO; maybe add __contains and __startwith
 # And if you do, add it to the when*() methods docstrings

 def __init__(self, tag=None, strict=False, stream=None):
 self.tag = tag
 self.strict = strict

 #: Doc comment for class attribute Foo.bar.
 #: It can have multiple lines.
 self.stream = None
 if stream is None:
 self.stream = sys.stdout
 else:
 self.stream = stream

 # these filters apply to context variables
 self.passes = True
 self.context_filters = []
 self.value_filters = []
 self._viewed_context_keys = []

 # a list of fields that will be printed if filters pass
 self.print_keys = []

 # holds a string rep for this object
 self._str = ''

 # a bool to hold whether or not all filters have passed
 self._passes_all = False

 def reset(self):
 self.passes = False
 self.context_filters = []
 self.value_filters = []
 self._viewed_context_keys = []

 def _key_to_field_op(self, key):
 # this method looks at a key and checks if it ends in any of the
 # endings that have special django-like query meanings.
 # It translates those into comparision operators and returns the
 # name of the actual key.
 op = operator.eq
 name = key
 for op_name, trial_op in self.__class__._op_for.items():
 if key.endswith(op_name):
 op = trial_op
 name = key.split('__')[0]
 break
 return op, name

 @classmethod
 def set_context(cls, **kwargs):
 cls._context.update(kwargs)

 @classmethod
 def unset_context(cls, *keys):
 for key in keys:
 if key in cls._context:
 cls._context.pop(key)

[docs] def when(self, *bools):
 """
 :type bools: bool
 :param bools: Boolean arguments

 All boolean arguments passed to this method must evaluate to `True` for
 printing to be enabled.

 So for example, the following code would print ``x: 1``

 .. code-block:: python

 for x in range(10):
 Behold().when(x == 1).show('x')
 """
 self.passes = self.passes and all(bools)
 return self

[docs] def view_context(self, *context_keys):
 """
 :type context_keys: string arguments
 :param context_keys: Strings with context keys

 Supply this method with any context keys you would like to show.
 """
 self._viewed_context_keys.extend(context_keys)
 return self

[docs] def when_context(self, **criteria):
 """
 :type criteria: kwargs
 :param criteria: Key word arguments of var_name=var_value

 The key-word arguments passed to this method specify the context
 constraints that must be met in order for printing to occur. The
 syntax of these constraints is reminiscent of that used in Django
 querysets. All specified criteria must be met for printing to occur.

 The following syntax is supported.

 * ``x__lt=1`` means ``x < 1``
 * ``x__lte=1`` means ``x <= 1``
 * ``x__le=1`` means ``x <= 1``
 * ``x__gt=1`` means ``x > 1``
 * ``x__gte=1`` means ``x >= 1``
 * ``x__ge=1`` means ``x >= 1``
 * ``x__ne=1`` means ``x != 1``
 * ``x__in=[1, 2, 3]`` means ``x in [1, 2, 3]``

 The reason this syntax is needed is that the context values being
 compared are not available in the local scope. This renders the normal
 Python comparison operators useless.
 """
 self._add_context_filters(**criteria)
 return self

[docs] def when_values(self, **criteria):
 """
 By default, ``Behold`` objects call ``str()`` on all variables before
 sending them to the output stream. This method enables you to filter on
 those extracted string representations. The syntax is exactly like that
 of the ``when_context()`` method. Here is an example.

 .. code-block:: python

 from behold import Behold, Item

 items = [
 Item(a=1, b=2),
 Item(c=3, d=4),
]

 for item in items:
 # You can filter on the string representation
 Behold(tag='first').when_values(a='1').show(item)

 # Behold is smart enough to transform your criteria to strings
 # so this also works
 Behold(tag='second').when_values(a=1).show(item)

 # Because the string representation is not present in the local
 # scope, you must use Django-query-like syntax for logical
 # operations.
 Behold(tag='third').when_values(a__gte=1).show(item)
 """
 criteria = {k: str(v) for k, v in criteria.items()}
 self._add_value_filters(**criteria)
 return self

 def _add_context_filters(self, **criteria):
 for key, val in criteria.items():
 op, field = self._key_to_field_op(key)
 self.context_filters.append((op, field, val))

 def _add_value_filters(self, **criteria):
 for key, val in criteria.items():
 op, field = self._key_to_field_op(key)
 self.value_filters.append((op, field, val))

 def _passes_filter(self, filter_list, value_extractor, default_when_missing=True):
 passes = True
 for (op, field, filter_val) in filter_list:
 # _Sentinal object means current value couldn't be extraced
 current_val = value_extractor(field)
 no_value_found = isinstance(current_val, _Sentinal)

 # if you couldn't extract a value, do the default thing
 if no_value_found:
 passes = default_when_missing
 # otherwise update whether or not this passes
 else:
 passes = passes and op(current_val, filter_val)

 if not passes:
 return False
 return True

 def _passes_value_filter(self, item, name):
 if not self.value_filters:
 return True

 def value_extractor(field):
 return self.extract(item, field)

 return self._passes_filter(self.value_filters, value_extractor)

 def _strict_checker(self, names, item=None):
 if self.strict:
 names = set(names)
 if item is None:
 allowed_names = set(self.__class__._context.keys())
 else:
 allowed_names = set(item.__dict__.keys())
 bad_names = names - allowed_names
 if bad_names:
 msg = (
 '\n\nKeys {} not found.\n'
 'Allowed keys: {}'
).format(
 list(sorted(bad_names)),
 list(sorted(allowed_names))
)

 raise ValueError(msg)

 def _passes_context_filter(self):
 if not self.context_filters:
 return True
 else:

 def value_extractor(field):
 return self.__class__._context.get(field, _Sentinal())

 return self._passes_filter(
 self.context_filters, value_extractor,
 default_when_missing=False)

 def passes_all(self, item=None, att_names=None):
 if not self.passes or not self._passes_context_filter():
 self._passes_all = False

 elif item is not None and att_names is not None:
 self._passes_all = all([
 self._passes_value_filter(item, name)
 for name in att_names
])
 else:
 self._passes_all = True
 return self._passes_all

 def _separate_names_objects(self, values):
 att_names = []
 objs = []
 for val in values:
 if isinstance(val, str):
 att_names.append(val)
 else:
 objs.append(val)
 return att_names, objs

 def _validate_objs(self, objs):
 has_obj = bool(objs)
 has_multi_objs = len(objs) > 1

 # only allow at most one object
 if has_multi_objs:
 raise ValueError(
 '\n\nYou can pass at most one non-string argument.'
)

 if has_obj:
 # make sure object is useable
 if not hasattr(objs[0], '__dict__'):
 raise ValueError(
 'Error in Behold() The object you passed has '
 'no __dict__ attribute'
)

 def _get_item_and_att_names(self, *values, **data):
 if not self.passes_all():
 return None, None

 att_names, objs = self._separate_names_objects(values)
 all_att_names = set(att_names)

 # gather information about the inputs
 has_data = bool(data)
 has_obj = bool(objs)

 # make sure objs are okay
 self._validate_objs(objs)

 # If an object was provided, create a dict with its attributes
 if has_obj:
 att_dict = objs[0].__dict__

 # If no object was provided, construct an item from the calling local
 # scope
 else:
 # this try/else block is needed to breake reference cycles
 try:
 att_dict = {}
 calling_frame = inspect.currentframe().f_back.f_back

 # update with local variables of the calling frame
 att_dict.update(calling_frame.f_locals)
 finally:
 # delete the calling frame to avoid reference cycles
 del calling_frame

 # If data was passed, it gets priority
 if has_data:
 att_dict.update(data)
 att_names.extend(sorted(data.keys()))

 # if no attribute names supplied, use all of them
 if not att_names:
 att_names = sorted(att_dict.keys())
 all_att_names = all_att_names.union(set(att_names))

 # do strict check if requested
 if self.strict:
 self._strict_checker(att_names, item=Item(**att_dict))

 # check for values passing
 if not self.passes_all(Item(**att_dict), list(all_att_names)):
 return None, None

 # Limit the att_dict to have only requested attributes.
 # Using an ordered dict here to preserve attribute order
 # while deduplicating
 ordered_atts = OrderedDict()
 for att_name in att_names:
 ordered_atts[att_name] = att_dict.get(att_name, None)

 # Make an item out of the att_dict (might lose order, but don't care)
 item = Item(**ordered_atts)

 # make an ordered list of attribute names
 ordered_att_names = list(ordered_atts.keys())
 return item, ordered_att_names

 @classmethod
 def get_stash(cls, stash_name):
 if stash_name in cls._stash:
 return copy.deepcopy(cls._stash[stash_name])
 else:
 raise ValueError(
 '\n\nRequested name \'{}\' not in {}'.format(
 stash_name, list(cls._stash.keys()))
)

 @classmethod
 def clear_stash(cls, *names):
 if names:
 for name in names:
 if name in cls._stash:
 del cls._stash[name]
 else:
 raise ValueError(
 '\n\nName \'{}\' not in {}'.format(
 name, list(cls._stash.keys())
)
)
 else:
 cls._stash = defaultdict(list)

[docs] def stash(self, *values, **data):
 """
 The stash method allows you to stash values for later analysis. The
 arguments are identical to the ``show()`` method. Instead of writing
 outpout, however, the ``stash()`` method populates a global list with
 the values that would have been printed. This allows them to be
 accessed later in the debugging process.

 Here is an example.

 .. code-block:: python

 from behold import Behold, get_stash

 for nn in range(10):
 # You can only invoke ``stash()`` on behold objects that were
 # created with tag. The tag becomes the global key for the stash
 # list.
 behold = Behold(tag='my_stash_key')
 two_nn = 2 * nn

 behold.stash('nn' 'two_nn')

 # You can then run this in a completely different file of your code
 # base.
 my_stashed_list = get_stash('my_stash_key')
 """
 if not self.tag:
 raise ValueError(
 'You must instantiate Behold with a tag name if you want to '
 'use stashing'
)

 item, att_names = self._get_item_and_att_names(*values, **data)
 if not item:
 self.reset()
 return False

 out = {name: item.__dict__.get(name, None) for name in att_names}

 self.__class__._stash[self.tag].append(out)
 self.reset()
 return True

 def get(self, *values, **data):
 item, att_names = self._get_item_and_att_names(*values, **data)
 if not item:
 self.reset()
 return None
 out = {name: item.__dict__.get(name, None) for name in att_names}
 return out

 def is_true(self, item=None):
 """
 If you are filtering on object values, you need to pass that object here.
 """
 if item:
 values = [item]
 else:
 values = []
 self._get_item_and_att_names(*values)
 return self._passes_all

[docs] def show(self, *values, **data):
 """
 :type values: str arguments
 :param values: A list of variable or attribute names you want to print.
 At most one argument can be something other than a
 string. Strings are interpreted as the
 variable/attribute names you want to print. If a single
 non-string argument is provided, it must be an object
 having attributes named in the string variables. If no
 object is provided, the strings must be the names of
 variables in the local scope.

 :type data: keyword args
 :param data: A set of keyword arguments. The key provided will be the
 name of the printed variables. The value associated with
 that key will have its str() representation printed. You
 can think of these keyword args as attatching additional
 attributes to any object that was passed in args. If no
 object was passed, then these kwargs will be used to create
 an object.

 This method will return ``True`` if all the filters passed, otherwise it
 will return ``False``. This allows you to perform additional logic in
 your debugging code if you wish. Here are some examples.

 .. code-block:: python

 from behold import Behold, Item
 a, b = 1, 2
 my_list = [a, b]

 # show arguments from local scope
 Behold().show('a', 'b')

 # show values from local scope using keyword arguments
 Behold.show(a=my_list[0], b=my_list[1])

 # show values from local scope using keyword arguments, but
 # force them to be printed in a specified order
 Behold.show('b', 'a', a=my_list[0], b=my_list[1])

 # show attributes on an object
 item = Item(a=1, b=2)
 Behold.show(item, 'a', 'b')

 # use the boolean return by show to control more debugging
 a = 1
 if Behold.when(a > 1).show('a'):
 import pdb; pdb.set_trace()
 """
 item, att_names = self._get_item_and_att_names(*values, **data)
 if not item:
 self.reset()
 return False

 self._strict_checker(att_names, item=item)

 # set the string value
 self._str = self.stringify_item(item, att_names)
 self.stream.write(self._str + '\n')

 passes_all = self._passes_all
 self.reset()
 return passes_all

 def stringify_item(self, item, att_names):
 if not att_names:
 raise ValueError(
 'Error in Behold. Could not determine attributes/'
 'variables to show.')

 out = []
 for ind, key in enumerate(att_names):
 out.append(key + ': ')
 has_more = ind < len(att_names) - 1
 has_more = has_more or self.tag or self._viewed_context_keys
 if has_more:
 ending = ', '
 else:
 ending = ''
 val = self.extract(item, key)
 out.append(val + ending)

 self._strict_checker(self._viewed_context_keys)

 for ind, key in enumerate(self._viewed_context_keys):
 has_more = ind < len(self._viewed_context_keys) - 1
 has_more = has_more or self.tag
 if has_more:
 ending = ', '
 else:
 ending = ''
 out.append(
 '{}: {}{}'.format(
 key,
 self.__class__._context.get(key, ''),
 ending
)
)

 if self.tag:
 out.append(self.tag)
 return ''.join(out)

[docs] def extract(self, item, name):
 """
 You should never need to call this method when you are debugging. It is
 an internal method that is nevertheless exposed to allow you to
 implement custom extraction logic for variables/attributes.

 This method is responsible for turning attributes into string for
 printing. The default implementation is shown below, but for custom
 situations, you inherit from `Behold` and override this method to obtain
 custom behavior you might find useful. A common strategy is to load up
 class-level state to help you make the necessary transformation.

 :type item: Object
 :param item: The object from which to print attributes. If you didn't
 explicitly provide an object to the `.show()` method,
 then `Behold` will attach the local variables you
 specified as attributes to an :class:`.Item` object.

 :type name: str
 :param name: The attribute name to extract from item

 Here is the default implementation.

 .. code-block:: python

 def extract(self, item, name):
 val = ''
 if hasattr(item, name):
 val = getattr(item, name)
 return str(val)

 Here is an example of transforming Django model ids to names.

 .. code-block:: python

 class CustomBehold(Behold):
 def load_state(self):
 # Put logic here to load your lookup dict.
 self.lookup = your_lookup_code()

 def extract(self, item, name):
 if hasattr(item, name):
 val = getattr(item, name)
 if isinstance(item, Model) and name == 'client_id':
 return self.lookup.get(val, '')
 else:
 return super(CustomBehold, self).extract(name, item)
 else:
 return ''
 """
 val = ''
 if hasattr(item, name):
 val = getattr(item, name)
 return str(val)

 def __str__(self):
 return self._str

 def __repr__(self):
 return self.__str__()

[docs]class in_context(object):
 """
 :type context_vars: key-work arguments
 :param context_vars: Key-word arguments specifying the context variables
 you would like to set.

 You can define arbitrary context in which to perform your debugging. A
 common use case for this is when you have a piece of code that is called
 from many different places in your code base, but you are only interested in
 what happens when it's called from a particular location. You can just wrap
 that location in a context and only debug when in that context. Here is an
 example.

 .. code-block:: python

 from behold import BB # this is an alias for Behold
 from behold import in_context

 # A function that can get called from anywhere
 def my_function():
 for nn in range(5):
 x, y = nn, 2 * nn

 # this will only print for testing
 BB().when_context(what='testing').show('x')

 # this will only print for prodution
 BB().when_context(what='production').show('y')

 # Set a a testing context using a decorator
 @in_context(what='testing')
 def test_x():
 my_function()

 # Now run the function under a test
 test_x()

 # Set a production context using a context-manager and call the function
 with in_context(what='production'):
 my_function()
 """
 _behold_class = Behold

 def __init__(self, **context_vars):
 self._context_vars = context_vars

 def __call__(self, f):
 @functools.wraps(f)
 def decorated(*args, **kwds):
 with self:
 return f(*args, **kwds)
 return decorated

 def __enter__(self):
 self.__class__._behold_class.set_context(**self._context_vars)

 def __exit__(self, *args, **kwargs):
 self.__class__._behold_class.unset_context(*self._context_vars.keys())

[docs]def set_context(**kwargs):
 """
 :type context_vars: key-work arguments
 :param context_vars: Key-word arguments specifying the context variables
 you would like to set.

 This function lets you manually set context variables without using
 decorators or with statements.

 .. code-block:: python

 from behold import Behold
 from behold import set_context, unset_context

 # manually set a context
 set_context(what='my_context')

 # print some variables in that context
 Behold().when_context(what='my_context').show(x='hello')

 # manually unset the context
 unset_context('what')
 """
 Behold.set_context(**kwargs)

[docs]def unset_context(*keys):
 """
 :type keys: string arguments
 :param keys: Arguments specifying the names of context variables you
 would like to unset.

 See the ``set_context()`` method for an example of how to use this.
 """
 Behold.unset_context(*keys)

[docs]def get_stash(name):
 """
 :type name: str
 :param name: The name of the stash you want to retrieve

 :rtype: list
 :return: A list of dictionaries holding stashed records for each time the
 ``behold.stash()`` method was called.

 For examples, see documentation for ``Behold.stash()`` as well as the stash
 `examples on Github <https://github.com/robdmc/behold#stashing-results>`_.
 """
 return Behold.get_stash(name)

[docs]def clear_stash(*names):
 """
 :type names: string arguments
 :param name: The names of stashes you would like to clear.

 This method removes all global data associated with a particular stash name.
 """
 Behold.clear_stash(*names)

 © Copyright 2015, Ambition Inc..

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		behold 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Ambition Inc..

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		behold 0.2.0 documentation »

 All modules for which code is available

		behold.logger

 © Copyright 2015, Ambition Inc..

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

